Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.693
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579011

RESUMO

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Assuntos
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/genética , Mutação , Conformação Molecular , Conformação de Ácido Nucleico , Ligantes
2.
Sci Rep ; 14(1): 4163, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378700

RESUMO

Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.


Assuntos
Aminoglicosídeos , Antibacterianos , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Estreptomicina/farmacologia , Gentamicinas/farmacologia , Neomicina/farmacologia
3.
ACS Infect Dis ; 10(2): 527-540, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38294409

RESUMO

Gram-negative bacterial infections are difficult to manage as many antibiotics are ineffective owing to the presence of impermeable bacterial membranes. Polymicrobial infections pose a serious threat due to the inadequate efficacy of available antibiotics, thereby necessitating the administration of antibiotics at higher doses. Antibiotic adjuvants have emerged as a boon as they can augment the therapeutic potential of available antibiotics. However, the toxicity profile of antibiotic adjuvants is a major hurdle in clinical translation. Here, we report the design, synthesis, and biological activities of xanthone-derived molecules as potential antibiotic adjuvants. Our SAR studies witnessed that the p-dimethylamino pyridine-derivative of xanthone (X8) enhances the efficacy of neomycin (NEO) against Escherichia coli and Pseudomonas aeruginosa and causes a synergistic antimicrobial effect without any toxicity against mammalian cells. Biochemical studies suggest that the combination of X8 and NEO, apart from inhibiting protein synthesis, enhances the membrane permeability by binding to lipopolysaccharide. Notably, the combination of X8 and NEO can disrupt the monomicrobial and polymicrobial biofilms and show promising therapeutic potential against a murine wound infection model. Collectively, our results unveil the combination of X8 and NEO as a suitable adjuvant therapy for the inhibition of the Gram-negative bacterial infections.


Assuntos
Infecções por Bactérias Gram-Negativas , Xantonas , Animais , Camundongos , Antibacterianos/farmacologia , Biofilmes , Escherichia coli , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Mamíferos , Neomicina/farmacologia , Xantonas/farmacologia
4.
Biopreserv Biobank ; 22(1): 21-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36656160

RESUMO

Aims: Bacterial contamination may occur in feces during collection and processing of semen. Bacteria not only compete for nutrients with spermatozoa but also produce toxic metabolites and endotoxins and affect sperm quality. The aim of the present study was to investigate the effect of antibiotic supplementation on the sperm quality of Indian red jungle fowl, estimation and isolation of bacterial species and their antibiotic sensitivity. Materials and Methods: Semen was collected and initially evaluated, diluted, and divided into six experimental extenders containing gentamicin (2.5 µg/mL), kanamycin (31.2 µg/mL), neomycin (62.5 mg/mL), penicillin (200 U/mL), and streptomycin (250 µg/mL), and a control having no antibiotics were cryopreserved and semen quality was evaluated at post-dilution, post-cooling, post-equilibration, and post-thawing stages (Experiment 1). A total aerobic bacterial count was carried out after culturing bacteria (Experiment 2) and subcultured for antibiotic sensitivity (Experiment 3). Results: It was shown that penicillin-containing extender improved semen quality (sperm motility, plasma membrane integrity, viability, and acrosomal integrity) compared with the control and other extenders having antibiotics. The bacteria isolated from semen were Escherichia coli, Staphylococcus spp., and Bacillus spp. Antibiotic sensitivity results revealed that E. coli shows high sensitivity toward neomycin, kanamycin, and penicillin. Staphylococcus spp. shows high sensitivity toward streptomycin, neomycin, and penicillin. Bacillus spp. shows high sensitivity toward kanamycin and penicillin. Conclusions: It was concluded that antibiotics added to semen extender did not cause any toxicity and maintained semen quality as that of untreated control samples, and penicillin was identified as most effective antibiotic. It is recommended that penicillin can be added to the semen extender for control of bacterial contamination without affecting the semen quality of Indian red jungle fowl.


Assuntos
Antibacterianos , Preservação do Sêmen , Masculino , Humanos , Antibacterianos/farmacologia , Sêmen/microbiologia , Análise do Sêmen , Escherichia coli , Motilidade dos Espermatozoides , Preservação do Sêmen/métodos , Espermatozoides , Penicilinas/farmacologia , Estreptomicina/farmacologia , Neomicina/farmacologia , Bactérias , Canamicina/farmacologia
5.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
6.
Pharmacol Rep ; 75(5): 1276-1290, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704832

RESUMO

BACKGROUND: Human serum albumin (HSA) is a valuable component of non-enzymatic and endogenous antioxidant mechanisms. The antioxidant activity of HSA can be modulated by ligands, including drugs. Although this is a central topic in the field of oxidation, there is still a lack of information about the protection against the effects of elevated free radical levels. METHODS: The aim of this study was to investigate the antioxidant activity of kanamycin (KAN) and neomycin (NEO) and their effect on the antioxidant potential of HSA using spectroscopic and microcalorimetric techniques. RESULTS: Despite the fact that kanamycin and neomycin interact with HSA, no changes in the secondary structure of the protein have been observed. The analysis of the aminoglycoside antibiotics showed their low antioxidant activity and a synergistic effect of the interaction, probably due to the influence of ligands (KAN, NEO) on the availability of HSA amino acid residues functional groups, such as the free thiol group (Cys-34). CONCLUSIONS: Based on the spectroscopic and microcalorimetric data, both KAN and NEO can be considered modulators of the HSA antioxidant activity.


Assuntos
Antioxidantes , Albumina Sérica Humana , Humanos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Canamicina/farmacologia , Neomicina/farmacologia , Ligação Proteica , Albumina Sérica Humana/metabolismo
7.
Int J Biol Macromol ; 236: 123941, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893486

RESUMO

DVL is a Man/Glc-binding lectin from Dioclea violacea seeds that has the ability to interact with the antibiotic gentamicin. The present work aimed to evaluate whether the DVL has the ability to interact with neomycin via CRD and to examine the ability of this lectin to modulate the antibiotic effect of neomycin against multidrug-resistant strains (MDR). The hemagglutinating activity test revealed that neomycin inhibited the hemagglutinating activity of DVL with a minimum inhibitory concentration of 50 mM, indicating that the antibiotic interacts with DVL via the carbohydrate recognition domain (CRD). DVL immobilized on cyanogen bromide-activated Sepharose® 4B bound 41 % of the total neomycin applied to the column, indicating that the DVL-neomycin interaction is efficient for purification processes. Furthermore, the minimum inhibitory concentrations (MIC) obtained for DVL against all strains studied were not clinically relevant. However, when DVL was combined with neomycin, a significant increase in antibiotic activity was observed against S. aureus and P. aeruginosa. These results demonstrate the first report of lectin-neomycin interaction, indicating that immobilized DVL has the potential to isolate neomycin by affinity chromatography. Moreover, DVL increased the antibiotic activity of neomycin against MDR, suggesting that it is a potent adjuvant in the treatment of infectious diseases.


Assuntos
Dioclea , Fabaceae , Humanos , Masculino , Lectinas/farmacologia , Antibacterianos/farmacologia , Dioclea/química , Neomicina/farmacologia , Lectinas de Plantas/química , Staphylococcus aureus/metabolismo , Fabaceae/metabolismo
8.
Mol Neurobiol ; 60(6): 3100-3112, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800156

RESUMO

The regeneration of hair cells in zebrafish is a complex process involving the precise regulation of multiple signaling pathways, but this complicated regulatory network is not fully understood. Current research has primarily focused on finding molecules and pathways that can regulate hair cell regeneration and restore hair cell functions. Here, we show the role of N-Myc downstream regulated gene 2 (ndrg2) in zebrafish hair cell regeneration. We first found that ndrg2 was dynamically expressed in neuromasts of the developing zebrafish, and this expression was increased after neomycin-induced hair cell damage. Then, ndrg2 loss-of-function larvae showed reduced numbers of regenerated hair cells but increased numbers of supporting cells after neomycin exposure. By in situ hybridization, we further observed that ndrg2 loss of function resulted in the activation of Notch signaling and downregulation of atoh1a during hair cell regeneration in vivo. Additionally, blocking Notch signaling rescued the number of regenerated hair cells in ndrg2-deficient larvae. Together, this study provides evidence for the role of ndrg2 in regulating hair cell regeneration in zebrafish neuromasts.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Cabelo , Células Ciliadas Auditivas/metabolismo , Sistema da Linha Lateral/metabolismo , Neomicina/farmacologia , Neomicina/metabolismo , Transdução de Sinais , Peixe-Zebra/genética
9.
Prev Vet Med ; 212: 105852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689897

RESUMO

Neomycin is a first-choice antibiotic for treatment of porcine enteritis caused by enterotoxigenic Escherichia coli (ETEC), but little is known about factors influencing resistance to this drug. The aims of this study were to assess antimicrobial resistance and virulence in 325 E. coli isolates obtained in 2020 from various infections in pigs, and to identify factors associated with neomycin resistance development. Susceptibility to 16 antimicrobial agents was determined by broth microdilution, and occurrence of ETEC-associated virulence factors was screened by PCR and hemolysis on blood agar. Univariate and multivariate logistic regression analyses were performed to determine if age group, virulence factors, or antibiotic use (neomycin and other antibiotics) were associated with neomycin resistance. STa, STb, LT, F4, and F18 were detected in 14%, 37%, 26%, 21% and 23% of the isolates, respectively. Resistance was low for antimicrobials of high public health importance (1.5% for cefotaxime, 1% for colistin and no fluoroquinolone resistance) but high for drugs used for treatment of ETEC enteritis (e.g. 20% for neomycin). Isolates with the ETEC pathotype were significantly associated with the weaner age group and intestinal/fecal origin. Multivariate analysis showed that recent neomycin use and presence of F4 or F18 were significantly associated with neomycin resistance amongst isolates from weaners. These results prove an association between neomycin resistance and use at the farm level. Further research is warranted to determine why neomycin resistance was associated with F4 and F18, and whether neomycin use may co-select for virulent strains.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Neomicina/farmacologia , Neomicina/uso terapêutico , Diarreia/veterinária , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Virulência/uso terapêutico , Dinamarca , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/epidemiologia
10.
Protein Pept Lett ; 30(1): 92-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36281865

RESUMO

BACKGROUND: The body needs to maintain a firm balance between the inducers and inhibitors of angiogenesis, the process of proliferation of blood vessels from pre-existing ones. Human angiogenin (hAng), being a potent inducer of angiogenesis, is a cause of tumor cell proliferation, therefore its inhibition becomes a vital area of research. Aminoglycosides are linked ring systems consisting of amino sugars and an aminocyclitol ring and are in use in clinical practices for a long time. These compounds have found clinical uses as antibacterial agents that inhibit bacterial protein synthesis. OBJECTIVE: Gentamycin C1, Kanamycin A, Neomycin B, Paromomycin I, and Streptomycin A are commonly used aminoglycoside antibiotics that have been used for the present study. Among these, Neomycin has reported inhibitory activity against angiogenin-induced angiogenesis on the chicken chorioallantoic membrane. This study focuses on the thermodynamic parameters involved in the interactions of these antibiotics with hAng. METHODS: Agarose gel-based assay, Fluorescence quenching studies and Docking studies. RESULTS: Anti-ribonucleolytic effect of the antibiotics was observed qualitatively using an agarose gelbased assay, which shows that Neomycin exhibits the most efficient inhibition of hAng. Fluorescence quenching studies at different temperatures, using Stern-Volmer and van't Hoff equations provide information about the thermodynamics of binding, which furthermore highlights the higher binding constant of Neomycin. Docking studies showed that the antibiotics preferably interact with the nuclear translocation site, except Streptomycin, which shows affinity towards the ribonucleolytic site of the protein with very less affinity value. CONCLUSION: The study has shown the highly spontaneous formation of Neomycin-hAng complex, giving an exothermic reaction with increase in the degree of freedom of the protein-ligand complex.


Assuntos
Aminoglicosídeos , Antibacterianos , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Antibacterianos/química , Neomicina/farmacologia , Neomicina/metabolismo , Sefarose , Estreptomicina , Termodinâmica
11.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499606

RESUMO

Angiogenesis, the growth of new blood vessels, is a critical factor of carcinogenesis. Neomycin and neamine, two drugs blocking the nuclear translocation of angiogenin (ANG), have been proven to inhibit tumour growth in vivo. However, the high toxicity of neomycin prevents its therapeutic use, thus indicating that the less toxic neamine may be a better candidate. Endothelial cells were cultured on a biocompatible multiple microelectrode array (MMA). The release of NO evoked by ANG or vascular endothelial growth factor (VEGF) was detected electrochemically. The effects of neomycin and neamine on ANG- and VEGF-induced NO releases have been investigated. Neomycin totally blocks NO release for concentrations down to the pM range, probably through the inhibition of the Akt kinase phosphorylation, as revealed by confocal microscopy. On the other hand, both ANG- and VEGF-induced NO releases were not significantly hindered by the presence of high concentrations of neamine. The inhibition of the Akt pathway and NO release are expected to lead to a severe decrease in tissue growth and repair, thus indicating a possible cause for the toxicity of neomycin. Furthermore, the data presented here show that ANG- and VEGF-induced NO releases are not dependent on the nuclear translocation of angiogenin, as these events were not abolished by the presence of neamine.


Assuntos
Indutores da Angiogênese , Neomicina , Neomicina/farmacologia , Óxido Nítrico , Fator A de Crescimento do Endotélio Vascular/farmacologia , Células Endoteliais , Fosforilação , Fatores de Crescimento do Endotélio Vascular , Células Cultivadas
12.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232332

RESUMO

The cell wall integrity pathway (CWI) is a MAPK-mediated signaling route essential for yeast cell response to cell wall damage, regulating distinct aspects of fungal physiology. We have recently proven that the incorporation of a genetic circuit that operates as a signal amplifier into this pathway allows for the identification of novel elements involved in CWI signaling. Here, we show that the strong growth inhibition triggered by pathway hyperactivation in cells carrying the "Integrity Pathway Activation Circuit" (IPAC) also allows the easy identification of new stimuli. By using the IPAC, we have found various chemical agents that activate the CWI pathway, including the aminoglycoside neomycin. Cells lacking key components of this pathway are sensitive to this antibiotic, due to the disruption of signaling upon neomycin stimulation. Neomycin reduces both phosphatidylinositol-4,5-bisphosphate (PIP2) availability at the plasma membrane and myriocin-induced TORC2-dependent Ypk1 phosphorylation, suggesting a strong interference with plasma membrane homeostasis, specifically with PIP2. The neomycin-induced transcriptional profile involves not only genes related to stress and cell wall biogenesis, but also to amino acid metabolism, reflecting the action of this antibiotic on the yeast ribosome.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Fosfatos de Inositol/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neomicina/farmacologia , Fosfatidilinositóis/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Chempluschem ; 87(11): e202200250, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148854

RESUMO

Targeting RNA with synthetic small molecules attracted much interest during recent years as a particularly promising therapeutic approach in a large number of pathologies spanning from genetic disorders, cancers as well as bacterial and viral infections. In this work, we took advantage of a known RNA binder, neomycin, to prepare neomycin-imidazole conjugates mimicking the active site of ribonuclease enzymes able to induce a site-specific cleavage of HIV-1 TAR RNA in physiological conditions. These new conjugates were prepared using a straightforward synthetic methodology and were studied for their ability to bind the target, inhibit Tat/TAR interaction and induce selective cleavage using fluorescence-based assays and molecular docking. We found compounds with nanomolar affinity, promising cleavage activity and the ability to inhibit Tat/TAR interaction with submicromolar IC50 s.


Assuntos
Repetição Terminal Longa de HIV , Neomicina , Neomicina/farmacologia , Neomicina/química , Neomicina/metabolismo , Clivagem do RNA , Simulação de Acoplamento Molecular , RNA Viral/química , RNA Viral/metabolismo , Imidazóis
14.
J Pharm Sci ; 111(12): 3287-3296, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977592

RESUMO

Flavonoids are the secondary metabolites widely used in pharmaceutical industries due to their several health benefits. Quercetin and rutin, well known flavonoids possesses various pharmacological properties but the constraints of poor aqueous solubility and impermeability across cell membranes restricts their use in formulation development. Moreover, the rising problem of antimicrobial resistance has also caused a serious threat to human life, thus demanding the urgent need of developing more effective antimicrobial formulations. In view of this, the present research work is focused on utilizing the most feasible flavonoid-surfactant concentrations obtained from the already reported physico-chemical analysis in developing an improved neomycin topical formulation through drug combinatorial approach. The formulations were subjected for assessment of physical parameters such as determination of pH, viscosity and spreadability. The drug release profile of the formulations was studied through different mathematical models. After evaluation of all the parameters, two best formulations (NQ-T2 [HE] and NR-T1 [HE]) were selected for antimicrobial evaluation studies against different bacterial and fungal clinical isolates. Among the two formulations, NQ-T2 [HE] showed excellent antibacterial activity against the bacterial strains while NR-T1 [HE] also exhibited promising results when compared with the standard formulations. Overall, this study represents a possible solution to enhance the antimicrobial efficacy of neomycin formulations by combining them with flavonoids through micelles assisted drug combination approach.


Assuntos
Anti-Infecciosos , Neomicina , Humanos , Neomicina/farmacologia , Micelas , Flavonoides/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia
15.
Infect Immun ; 90(10): e0022922, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040156

RESUMO

Eimeria falciformis is a murine-infecting coccidium that mainly infects the cecum and colon where it coexists with a large number of endogenous bacteria. Here, we found that mice treated with a broad-spectrum antibiotic cocktail including ampicillin, neomycin, metronidazole, and vancomycin had less oocyst production and milder pathological consequences after E. falciformis infection than mice without antibiotics, regardless of the inoculation doses. Furthermore, we showed that antibiotic treatment reduced parasitic invasion and prolonged asexual stage during E. falciformis infection, which may result in alleviating the infection. Interestingly, when further defining different antibiotic combinations for E. falciformis infection, it was shown that mice treated with ampicillin plus vancomycin had substantially attenuated E. falciformis infections as measured by cecal parasite counts and histopathological features. In contrast, treatment with metronidazole plus neomycin was beneficial to E. falciformis infection. Analyses of gut microbiota revealed various changes in bacterial composition and diversity following antibiotic treatments that were associated with host susceptibility to E. falciformis infection. Together, these findings suggest that gut microbiota may regulate the course and pathogenicity of E. falciformis infection, while the mechanisms need to be further investigated, especially for the development of coccidial vaccines for use in farm animals.


Assuntos
Coccidiose , Eimeria , Microbioma Gastrointestinal , Parasitos , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Metronidazol/farmacologia , Vancomicina , Ampicilina/farmacologia , Neomicina/farmacologia
16.
J Immunol Res ; 2022: 9202491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903754

RESUMO

Colitis is a frequently occurred side effect of immune checkpoint inhibitors (ICIs), which are increasingly used in cancer treatment, whereas antibiotics are widely used to treat colitis, their effectiveness in ICI-associated colitis remains controversial. In this study, we firstly assessed the effectiveness of several commonly used antibiotics and antibiotic cocktails in alleviating of dextran sulfate sodium- (DSS-) induced colitis. We observed that two narrow-spectrum antibiotics, neomycin and metronidazole, were more effective in alleviating colitis, as evidenced by the remission of loss of the body weight, enlargement of the spleen, shortening of the colon, secretion of proinflammatory cytokines, and histological score of the colon tissue. Moreover, these two antibiotics resulted in better relief of colitis symptoms in the MC38 tumor-bearing male mice receiving the anti-PD-L1 mAb (αPD-L1) treatment, compared to the females. In the meantime, an enhanced response to αPD-L1 efficiency against mice colon cancer was observed in the male mouse group upon the application of these two antibiotics. In contrast, both neomycin and metronidazole showed destructive effects on the antitumor efficiency of αPD-L1 in female mice, despite relief from colitis. We found that antibiotic treatment attenuated the increased infiltration of granulocytes and myeloid cells in colon tissue induced by DSS in female mice, while reducing the proportion of Th17 cells in male mice. These differences were further associated with the sex-biased differences in the gut microbiota. These findings indicated that sex-dependent alterations in the gut microbiota should be considered when applying antibiotics for the treatment of ICI-associated colitis.


Assuntos
Colite , Neoplasias do Colo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Citocinas , Modelos Animais de Doenças , Feminino , Imunidade , Masculino , Metronidazol/efeitos adversos , Camundongos , Neomicina/farmacologia , Neomicina/uso terapêutico
17.
Int J Immunopathol Pharmacol ; 36: 3946320221113486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35816452

RESUMO

Objectives: Both nano silver and neomycin have wound healing properties. Silver nanoparticles have been used as main compounds for therapeutic drug delivery systems against various ailments. The present study aimed to prepare a neomycin silver nano-composite gel easily, rapidly, and cheaply method to improve wound healing. Methods: Forty-five Wistar rats (150-200 g) divided into nine groups: wound untreated, wound fusidic acid treated, wound neomycin treated, three groups with wound and neomycin silver nano-composite gel at 1:1, 1:2, and 1:3 concentrations, respectively, and three groups wound treated silver nano gel at the previous concentrations, respectively. Percentages of wound healing and histopathological examination of the wound area were assessed in all groups. Results: Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images demonstrated the spherical shape of neomycin silver nano-composite gel without aggregation but homogenous dispersion in a gel matrix. Dynamic light scattering (DLS) showed a 4 nm size of nano silver, which agrees with AFM image data analysis but not with TEM image due to the good coating of the gel matrix to silver nanoparticles. Dynamic light scattering Zeta potential was -21 mV, illustrating the high bioactivity of the neomycin silver nano-composite. The groups receiving neomycin silver nano-composite gel showed a significantly higher and dose dependent wound healing compared to other treatment groups. Conclusion: The present work confirmed the potential wound healing activity of neomycin silver nano-composite gel compared to either alone.


Assuntos
Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/uso terapêutico , Nanogéis , Neomicina/farmacologia , Ratos , Ratos Wistar , Prata/farmacologia , Cicatrização
18.
J Biomed Mater Res A ; 110(11): 1749-1760, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35770845

RESUMO

This study was focused on the development of biodegradable nano-adhesives with efficient sealing and antibiotic effects for wound healing. Biodegradable polyaspartamide (PASPAM) was grafted with several functional groups to implement diverse roles-octadecylamine (C18 ) for nano-aggregate formation, dopamine (DOPA) for adhesive function, neomycin (NEO) for inhibition of bacterial infection. Specifically, NEO was conjugated to PASPAM with a pH-sensitive glycine (GLY) linker for targeted delivery on the acidic wound site. About 60% of the drug was ramteleased at pH 6.0, while about 22% was released at pH 7.4, showing the faster drug release pattern of nano-adhesives in the acidic environment. The C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed the bacterial viability higher than 70% at pH 7.4, but about 40% at pH 6.0. The wound breaking strength of the polymer-treated skin was much higher than that of the bare skin. According to the in vivo wound healing test using a mouse model, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed much faster healing performance than sutures. From those results, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives are expected to be utilized as effective adhesives that promote the wound healing with inhibition of bacterial infection.


Assuntos
Adesivos , Adesivos Teciduais , Adesivos/farmacologia , Antibacterianos/farmacologia , Di-Hidroxifenilalanina/farmacologia , Dopamina/farmacologia , Glicina , Neomicina/farmacologia , Adesivos Teciduais/farmacologia , Cicatrização
19.
Fish Shellfish Immunol ; 127: 148-154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714896

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Animais , Infecções por Vírus de DNA/veterinária , Peixes , Glutationa , Iridoviridae/genética , Neomicina/farmacologia
20.
Bioorg Chem ; 126: 105824, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636122

RESUMO

Despite their clinical importance, saving numerous human lifes, over- and mis-uses of antibiotics have created a strong selective pressure on bacteria, which induces the emergence of (multi)resistant strains. Antibioresistance is becoming so pregnant that since 2017, WHO lists bacteria threatening most human health (AWaRe, ESKAPE lists), and those for which new antibiotics are urgently needed. Since the century turn, this context is leading to a burst in the chemical synthesis of new antibiotics, mostly derived from natural antibiotics. Among them, aminoglycosides, and especially the neomycin family, exhibit broad spectrum of activity and remain clinically useful drugs. Therefore, numerous endeavours have been undertaken to modify aminoglycosides with the aim of overcoming bacterial resistances. After having replaced antibiotic discovery into an historical perspective, briefly surveyed the aminoglycoside mode of action and the associated resistance mechanisms, this review emphasized the chemical syntheses performed on the neomycin family and the corresponding structure activity relationships in order to reveal the really efficient modifications able to convert neomycin and its analogues into future drugs. This review would help researchers to strategically design novel aminoglycoside derivatives for the development of clinically viable drug candidates.


Assuntos
Infecções Bacterianas , Neomicina , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/química , Bactérias , Humanos , Neomicina/química , Neomicina/farmacologia , Paromomicina/química , Paromomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...